Robotics

Faculty Name: Narayanan Kallingal

Course Code: EXC 8041
Subject Name: Robotics

Academic year and term : 2018-19 Jan – April 2019

1. Syllabus

Subject Co	de	Subject Name		Tea	aching Sch	eme		Cre	dits As	sign	ed	
			T	heory	Practical	Tutorial	Theory	TW/Pra	actical	Tu	torial	Total
EXC8041		Robotics	0	4			04					04
Subject	Subject Subject			Examination Scheme								
Code		Name		Theory Marks			Term	Practi	ical	Oral	Total	
			In	Internal assessment			l Sem.	Work				
			Test	Test	Avg. of	E	xam					
			1	2	Test 1 an Test 2	d						
EXC8041	Rol	ootics	20	20	20		80					100

Module No.	Unit No.	Topics	Hrs.
1		Fundamentals of Robotics	03
	1.1	Robot Classification, Robot Components, Degrees of freedom, Joints,	
		Coordinates, Coordinate frames, workspace, applications	
2		Forward & Inverse Kinematics of Robots	09
	2.1	Homogeneous transformation matrices, Inverse transformation matrices,	
		Forward	
		and inverse kinematic equations – position and orientation	
	2.2	Denavit-Hatenberg representation of forward kinematics, Inverse kinematic solutions, Case studies	
3		Velocity Kinematics & Dynamics	14
	3.1	Differential motions and velocities : Differential relationship, Jacobian,	
		Differential motion of a frame and ro bot, Inverse Jacobian, Singularities.	
	3,2	Dynamic Analysis of Forces: Lagrangian mechanics, Newton Euler formulation, Dynamic equations of robots, Transformation of forces and moment between coordinate frames	
4		Robot Motion Planning	04
	4.1	Concept of motion planning, Bug Algorithms – Bug1, Bug2, Tangent Bug	
5		Potential Functions and Visibility Graphs	08
	5.1	Attractive/Repulsive potential, Gradient descent, wave-front planner, navigation potential functions, Visibility map, Gene ralized Voronoi diagrams and graphs, Silhouette methods	
6		Trajectory planning	08
	6.1	Trajectory planning, Joint-space trajectory planning, Cartesian-space trajectories	1
7		Robot Vision	06
	7.1	Image representation, Template matching, Polyhedral objects, Shape analysis, Segmentation, Iterative processing, Perspective transform.	
		Total	52

2. Course Outcomes:

Upon completion of this course students will be able to:

EXC8041.1: Describe the basics of Robotics

EXC8041.2: Describe and derive kinematics and dynamics of stationary and mobile robots.

EXC8041.3: Describe concepts of robot motion planning algorithms

EXC8041.4: Apply trajectory planning algorithms EXC8041.5: Apply image processing in robotic vision

CO Level (Bloom's Taxonomy)

EXC8041.1: Understand EXC8041.2: Understand EXC8041.3: Understand EXC8041.4: Apply EXC8041.5: Apply

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate

Importance) or 3 (High Importance) in respective mapping cell.

	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2
EXC8041.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-
EXC8041.2	3	3	-	-	-	-	-	-	-	-	-	-	-	-
EXC8041.3	3	3	-	-	-	-	-	-	-	-	ı	-	1	1
EXC8041.4	3	3	ı	ı	-	ı	ı	-	-	-	i	ı	ı	1
EXC8041.5	3	3	-	-	-	-	-	-	-	-	-	-	•	•
Course Average	3	3	0	0	0	0	0	0	0	0	0	0	0	0

Justification of PO to CO mapping

EXC8041.1	PO1	Acquire the basic knowledge of Robotics
EXC8041.2	PO1	Acquire the basic knowledge of mathematics to analyze Direct and inverse kinematics
	PO2	Analyze Direct and inverse kinematics problems using basic knowledge of mathematics
EXC8041.3	PO1	Understand the concepts of robot motion planning algorithms
	PO2	Analyze robotic motion planning
EXC8041.4	PO1	Understand trajectory planning algorithms
	PO2	Apply trajectory planning algorithms
EXC8041.5	PO1	Acquire the knowledge of image processing in robotic vision
	PO2	Apply the knowledge of image processing in Robotic vision

Contribution to outcomes will be achieved through content delivery: Modes of Content Delivery:

Modes of delivery

Modes of Delivery	Brief description of content delivered	Attained COs	Attained POs
Class room lecture	All modules	ALL	PO1,PO2
PPT	All modules	ALL	PO1,PO2

Assessment tool:	Rubrics		
Assignment	Timeline (2)	Level of content (4)	Reading and Understanding (4)
Laboratory Experiment	Timeline (2)	Understanding (4)	Performance (4)

CO Assessment Tools:

Course Outcome	Assessment Method										
	Direc	Indirect Method (20%)									
	Unit Tests		Assignments	Laboratory	Semester End Examination	Course exit survey					
	1	2									
EXC8041.1	20%		15%	15%	50 %	100%					
EXC8041.2	20%		15%	15%	50 %	100%					
EXC8041.3		20%	15%	15%	50 %	100%					
EXC8041.4		20%	15%	15%	50 %	100%					
EXC8041.5		20%	15%	15%	50 %	100%					

Lesson Plan

CLASS					BE Electronics, Semester VIII				
Academic T	erm					January – Apri	2019		
Subject						Robotics (EXC	8041)		
Periods (Ho	urs) pe	r week	Lecture			Lecture	4		
						Practical			
			Tutorial						
Evaluation System							Hours	Marks	
					Theory	examination	3	80	
					Interna	al Assessment		20	
					Practica	l Examination			
					Ora	l Examination			
			Term work			Term work			
		Ī	Total -			Total		100	
		1							
Time Table			Day				Time		
			Tues	day			12.00 noon – 1	.00 pm	
			Wednesday Thursday Friday				11.00 am – 12.	00 noon	
							11.00 am – 12.00 noon 11.00 am – 12.00 noon		
Course Co	onten	t and Less	son p	olan					
Module – 1	Мо	dels for Con	trol S	ystems					
Lec	cture	Date			Topic			Remarks(If any)	
No).	Planned	A	Actual					
1		01-01-1	19 0	08 – 01 – 19	Robot	classification, R	obot componen	ts	
2		02-01-1	19 0	9 – 01 – 19	Degree	of freedom, Jo	ints, Coordinate	es	
3		03 - 01 - 1	3-01-19 09-01-19			Coordinate frames, work space, Applications		Special Time Table	
Modulo 3	Eorus	ard and Inve	arco V	inomatics					
		1	rse Ki	mematics	Tonic			Domonicalita	
No.	cture D.	Date			Topic			Remarks(If any)	
_		Planned		Actual					

	25	22 – 02 – 19	08 – 03 – 19	Segmentation	
	24	21 – 02 – 19	07 – 03 – 19	Polyhedral objects, Shape analysis	
	23	20 – 02 – 19	06 – 03 – 19	Image representation, Template matching	
		Planned	Actual		
	Lecture No.	Date		Topics	Remarks (If Any)
Module	–7 Robotic	Vision			
	22	12 – 02 – 19	05 – 03 – 19	Bug Algorithms – Tangent Bug	
	21	08 – 02 – 19	01 – 03 – 19	Bug Algorithms – Bug 2	
	20	07 – 02 – 19	28 – 02 – 19	Bug Algorithms – Bug 1	
		04 – 02 – 19			Unit Test 1
	19	01 – 02 – 19	27 – 02 – 19	Concept of motion planning	
	No.	Planned	Actual		
	Lecture	Date		Topic	Remarks(If any)
Module	–4 Robot I	Motion Plannin	g g	<u>1</u>	1
	18	30 – 01 – 19	26 – 02 – 19	Cartesian space Trajectory planning	
	17	29 – 01 – 19	01 – 02 – 19	Cartesian space Trajectory planning	
	16	25 – 01 – 19	30 – 01 – 19	Joint space Trajectory planning	
	15	24-01-19	29 – 01 – 19	Joint space Trajectory planning	
	14	23 – 01 – 19	25 – 01 – 19	Trajectory planning	
	13	22 – 01 – 19	24-01-19	Trajectory planning	
Module	 	ctory planning		<u>'</u>	<u> </u>
	12	18 – 01 – 19	23 – 01 – 19	Case study	
	11	17-01-19	22 – 01 – 19	Inverse kinematics, solutions	
	10	16-01-19	18 – 01 – 19	Inverse kinematics	
	9	15 - 01 - 19	17-01-19	Inverse kinematics	
	8	11 – 01 – 19	16 – 01 – 19	Case study	
	7	10-01-19	15-01-19	D-H algorithm	
	6	09 – 01 – 19	11 – 01 – 19	Forward kinematics, Arm matrix	
	5	08 - 01 - 19	11-01-19	Homogeneous transformation matrices, Screw transformations	Special Time Table
	4	04 – 01 – 19	10-01-19	Transformation matrices, Inverse Transformation matrices	

26		26 – 02 – 19	12 – 03 – 19	Iterative processing, Perspective	
				transform.	
Module – 3	Velo	city Kinematics	and Dynamics	5	
27		27 – 02 – 19	14 – 03 – 19	Differential Relationship	
28		28 – 02 – 19	19 – 03 – 19	Differential Relationship Jacobian	
29		01 – 03 – 19	20 – 03 – 19	Differential motion of a frame and Robot	
30		05 – 03 – 19	22 – 03 – 19	Differential motion of a frame and Robot	
31		06 – 03 – 19	26 – 03 – 19	Inverse Jacobian	
32		07 – 03 – 19	27 – 03 – 19	Singularities	
;	33	08 – 03 – 19	28 – 03 – 19	Lagrangian mechanics	
34		12 – 03 – 19	29 – 04 – 19	Newton Euler formulation	
35		13 – 03 – 19	02 – 04 – 19	Dynamic equation of Robotics	
36		14 – 03 – 19	03 – 04 – 19	Transformation of forces and moment between coordinate frames	
Module – 5	Pote	ential Function	s and Visibility	graphs	
	cture	Date		Topic	Remarks(If any)
No).	Planned	Actual		
37		15 – 03 – 19	04 – 04 – 19	Attractive / Repulsive potential, Gradient Descent	
38		19 – 03 – 19	05 – 04 – 19	Wave-front planner, navigation potential functions	
39		20 – 03 – 19		Visibility map	
40		22 – 03 – 19		Generalized Voronoi diagrams and graphs	
41					
		26 – 03 – 19		Silhouette methods	

Text Books:

- 1. Robert Shilling, Fundamentals of Robotics Analysis and control, Prentice Hall of India
- 2. Saeed Benjamin Niku, "Introduction to Robotics Analysis, Control, Applications", Wiley India Pvt. Ltd., Second Edition, 2011
- 3. Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, "Principles of Robot Motion Theory, Algorithms and Implementations", Prentice-Hall of India, 2005.
- 4. Mark W. Spong , Seth Hutchinson, M. Vidyasagar, "Robot Modeling & Control", Wiley India Pvt. Ltd., 2006

- 5. John J. Craig, "Introduction to Robotics Mechanics & Control", Third Edition, Pearson Education, India, 2009
- 6. Aaron Martinez & Enrique Fernandez, "Learning ROS for Robotics Programming", Shroff Publishers, First Edition, 2013.
- 7. Mikell P. Groover et.al, "Industrial Robots-Technology, Programming & applications", McGraw Hill, New York, 2008

Internal Assessment: (IA):

Two tests must be conducted which should cover atleast 80% of the syllabus. The average marks of both the test will be considered as final IA marks.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No. 1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.
- 5. Weightage of marks will be as per Blueprint.

Practical Plan

CLASS			BE Elect	BE Electronics Semester VIII				
Academ	nic Term		January-	January– April 2019 (2018 – 19)				
Subject	Subject			Robotics (EXL8041)				
,	T: T.1.1.	D	D-4	. 1.	Ti			
	Time Table Day			ch	Tir	ne		
		Tuesday	D		1.30 pm – 3.30) pm		
	Wednesday			A 1.30 pm -		– 3.30 pm		
Title of	Experiments							
Sr.No.	Title			Module		POs		
1	Coordinate T	ransformations		Fundamer	ntals Robotics	PO1		
2	Homogeneou	s coordinate Tran	sformations	Fundamer	ntals Robotics	PO1		
3	Study of a SC	CARA robot		Forward & Kinematic		PO1, PO2		
4 Study of 5 axis Articulated Robot			bot	Forward 8		PO1, PO2		
5	Workspace Analysis			Forward 8	Alnverse	PO1, PO2		
6	Joint space trajectory planning			Kinematic Trajectory	planning	PO1, PO2		

7	Template matching		Potential Functions and Visibility Graphs	PO1, PO2
8	Segmentation and Ed	ge detection	Motion Planning	PO1, PO2
9	Bug Algorithms		Robot Vision	PO1, PO2
10	Gradient Descent Alg	gorithm	Robot Vision	PO1, PO2
Practica	al Plan			
Experimen	nt No. 1 Coordinate Tra	ansformations		
Batch		Dates		
	Planned	Acti	ıal	
A	16 – 01 – 2019	16 – 01 – 2019		
D	15 – 01 – 2019	15 – 01 – 2019		
Experimen	nt No. 2 Homogeneous	Coordinate Transform	nations	
A	23 – 01 – 2019	23 – 01 – 2019		
D	22 – 01 – 2019	22 – 01 – 2019		
Experimen	at No. 3 Study of a SC	ARA robot	I	
A	30 – 01 – 2019	30 – 01 – 2019		
D	29 – 01 – 2019	29 – 01 – 2019		
Experimen	at No. 4 Study of 5 axis	Articulated Robot		
A	13 – 02 – 2019	27 – 02 – 2019		
\overline{D}	12 – 02 – 2019	26 – 02 – 2019		
Experiment	No. 5 Workspace Ana	lysis	1	
A	20 – 02 – 2019	06 – 03 – 2019		
D	26 – 02 – 2019	26 – 02 – 2019		
Experiment	No. 6 Joint space traje	ectory planning	1	
A	27 – 02 – 2019	06 – 03 – 2019		
D	05 – 03 – 2019	05 – 03 – 2019		
Experiment	No. 7 Template match	ning	1	
A	06 – 03 – 2019	13 – 03 – 2019		
D	12 - 03 - 2019	05 – 03 – 2019		
Experiment	No. 8 Segmentation a	nd Edge detection	1	
A	13 - 03 - 2019	13 – 03 – 2019		

D	19 – 03 – 2019	12 – 03 – 2019	
Experin	nent No. 9 Bug Algorithm	S	
A	20 – 03 – 2019	20 – 03 – 2019	
D	26 – 03 – 2019	19 – 03 – 2019	
Experin	nent No. 10 Gradient Des	cent Algorithm	
A	27 – 03 – 2019	27 – 03 – 2019	
D	02 – 04 – 2019	26 – 03 – 2019	
	1	1	- 1